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Abstract

The purpose of this paper is to show a connection between the
embedding of Heyting’s logic in S4 with the translation which prefixes
the necessity operator O to every subformula and the embedding of
classical logic in Heyting’s logic with the translation which prefixes
double negation 7] 7] to every subformula. This is done by introdu-
cing some intuitionistic modal logics.

With the first translation, called t, Heyting’s first-order logic is
embedded in a modal system of the S4 type based on classical
first-order logic (its modal postulates are : necessitation, (J(A— B) —»
(DA-0OB), 10 1(A—>A) and DA-OOA; OA— A is lacking).
Again with t, classical first-order logic is embedded in a modal system
of the S5 type based on Heyting’s first-order logic (in addition to the
modal postulates above it has O(OOA vO 710 A)). If now we intro-
duce in Heyting’s logic an operator [J and assume (1A «— ] "]A, the
translation with ~] ] becomes an instance of t, and the resulting
modal system is an extension of the modal system of the S5 type
mentioned above. As in S4 we assume about [J more than strictly
needed for embedding Heyting’s logic (0 A— A is superfluous), so in
Heyting’s logic we assume about ~| | more than strictly needed for
embedding classical logic (A— "1 1A is superfluous). Minimal nor-
mal modal systems needed for these embeddings in the propositional
case are even slightly weaker than the systems above (they have
TJO071(A—>A) and OA —~ OO A with a O prefixed). Finally, Kripke-
style models for the propositional calculi corresponding to the modal
systems introduced are considered. Correspondence results for va-
rious modal axioms, and soundness and completeness results are
stated. Results for intuitionistic propositional modal systems follow
easily from some previous work done on this topic (which has not yet
been extended to cover predicate calculi; also a certain difficulty
involving the Barcan formula arises for the Heyting predicate calculus
with OA «7171A).
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Introduction

There are two famous kinds of translations connected with Hey-
ting’s logic. The first kind, which stems from [10] and [15], is based on
prefixing the necessity operator OO to subformulae of a nonmodal
formula. With translations of this kind Heyting’s logic can be embed-
ded in the modal system S4. The second kind of translation, which
stems from [12], [11] and [9], is based on prefixing double negation
~1 T1to subformulae. With translations of this kind classical logic can
be embedded in Heyting’s logic. Often in these translations [J and
—] 71 are not prefixed to certain subformulae, and in some cases
prefixed subformulae can be replaced by various equivalents. How-
ever, in this paper we shall concentrate on the two translations which
simply prefix (0 and 71 7] to every subformula (cf. [16], [7] and [12],
[13], [3] p. 208, 38.12, [14] pp. 41ff). We shall try to show that the
embeddings based on these two translations are more similar than it
seems to be usually realized. For that purpose we shall introduce
some intuitionistic modal logics.

Using the translation with [0 we shall embed Heyting’s first-order
logic into a modal system of the S4 type based on classical first-order
logic. With this translation we shall also embed classical first-order
logic into a modal system of the S5 type based on Heyting’s first-order
logic. If now we introduce in Heyting’s logic an operator [0 and
assume (JA — ] 1A, the translation with 7] "] becomes an instance
of the translation with O, and the resulting modal system is an
extension of the modal system of the S5 type based on Heyting’s logic
which we have just mentioned.

In §1 and §2 we introduce our first-order modal systems and we
present our embedding results. In §3 we consider the question what
are the minimal properties we must assume for [J in order to be able to
prove our embeddings. In § 4 we consider Kripke-style models for the
propositional calculi corresponding to our modal systems. We shall
give correspondence results for our modal axioms, and also sound-
ness and completeness results. We shall concentrate on the proposi-
tional calculi only because we can easily deduce results in this area
from what is known about modal logic with a classical or intuitionistic
base. Models for intuitionistic predicate modal logic seem to be rather
unexplored, and we would need some preparatory work on this topic
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before tackling particular systems like those we shall introduce. (At
the very end of our paper we shall hint at a particular difficulty
involving the Barcan formula which seems to arise for the models of
the Heyting predicate calculus with JA - 7] 71A.)

§ 1 First-Order Modal Logics

Let L be the language of the first-order predicate calculus which has
denumerably many individual variables x,x,,X;,..., denumerably
many individual constants, denumerably many predicate constants,
and the logical constants —», A, V, 7], Vand 3. As schematic letters for
formulae we shall use A, B, C, D, A,,... As usual, A — B abbreviates
(A->B) A (B> A). The schema A(x) stands for a formula in which
eventually x occurs free, and A(a) is obtained from A(x) by substitu-
ting the individual variable or individual constant a for free x, with
the usual provisos for substitution.

The Heyting first-order predicate calculus H is axiomatized in L
with the following usual axiom-schemata and rules:

1. A-(B>A),2. ( A-(B-C)) > ((A-B)>(A-0)),

3. C->A)-> (C-»B)-> (C->(AAB)), 4. (AANB)>A,
5. (AAB)->B,
6. A->(AVB), 7. B> (A VB), 8. (A-C)-»(B->0C) >
((AVB)-()),
9. (A-"1B) > (B->"1A), 10. "1A->(A->B),
11. A____A_’_B,
B
12. VxA(x) - A(a), 13. A(a) » IxA(®X),
14. _B'Z.A_, 15. _AZ’B_,
B- VxA ixA-B

provided x does not occur free in B in the last two rules.
The classical first-order predicate calculus C is obtained by exten-
ding H with A vV T]A.
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Now let L, be L extended with the necessity operator [J. The
system in L which we shall call H4 is axiomatized by extending H
with the following axiom-schemata and rules:

0O1. 0(A-B)-» (OA-0OB), 0a2. ——5;—,
03. 71107 1(A-A), 04. DOA-OO0A.

The system H5 is axiomatized by extending H4 with
0s5. O@A vOT10A).

The systems C4 and C5 are obtained by extending H4 and HS5
respectively with A V 7]A. The first-order modal calculi S4 and S5 are
obtained by extending C4 and CS respectively with JA— A.

It is not difficult to show that the following relations of proper
inclusion hold between the systems we have now introduced (arrows
indicate proper inclusion):

S5

S4

C4

/
\

/\/\
\/\/

H

These relations can be deduced either from the difference between
systems in L and systems in L, or from the proper containment of S4
in S5, or from the proper containment of H in C, or from the lack of
A - A in systems below S4 and S5 (this last fact will follow easily
from the results of § 4).
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§ 2 Embedding Heyting’s and Classical First-Order Logic in Modal
Logics

We shall say that a system S; can be embedded in a system S, by a
translation (1-1 mapping) m from the language of S, into the language-
of S, iff ks, A s, m(A). Let t(A) be the result of prefixing O to
every subformula of the formula A of L. More precisely, t(A) is
defined recursively as follows:

t(A) = [dA if A is atomic
t(AaB) = O(t(A) a t(B)) ifo is—, A, or V
tA) =0OBKA) if  is 7], Vx, or 3Ix.

Then we can prove the following theorems (where we assume that
S; and S, are included among the systems between S, and S,):

Theorem 1. H can be embedded by t in every system between H4 and
S4.

Theorem 2. C can be embedded by t in every system between HS and
Ss.

Proofs. 1. To show that i A = i, t(A) we make a straightforward
induction on the length of proof of A in H. For the converse we use
the fact that H4 is a subsystem of S4, and it is well-known that H can
be embedded in S4 by t (see [16] and [7]). Since H can be embedded in
both H4 and S4, it can be embedded in all the systems in between.

2. To show that z A = 1y t(A) we again make a straightforward
induction on the length of proof of A in C. For the converse suppose
igs t(A) and let Ctriv be the system in L obtained by extending C with
OA —~A. Then, since HS is contained in Ctriv, we have i, t(A),
which yields i5,;, A; and since Ctriv is a conservative extension of C
in L, we have iz A. So, C can be embedded in both HS and Ctriv,
which implies that it can be embedded in all the systems in between,
and in particular in all the systems between HS and S5. q.e.d.

An embedding of a nonmodal logic S, into a modal logic S, is more
interesting when the underlying nonmodal logic of S, is different from
S;. So we single out the following two consequences of our theorems:
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H can be embedded by t in C4,
C can be embedded by t in HS.

In other words, H can be interpreted from the classical standpoint if
we introduce a [0 of the S4 type like the one in C4, and C can be
interpreted from the intuitionistic standpoint if we introduce a [J of the
S5 type like the one in HS.

Whereas in C we apparently cannot define a O of the S4 type
sufficient for our embedding (in the propositional case this impossibi-
lity follows immediately from the nonexistence of a truth table
decision procedure for the Heyting propositional calculus), in H we
already have a [J of the S5 type sufficient for our embedding, though
somewhat stronger than the [0 of H5. This operator is ~ 1~ 1.

Let Hdn be the system in L obtained by extending H with

Odn. OA-T171A.

It is easy to show that HS is contained in Hdn. The converse doesn’t
hold (note that A—[JA can’t be provable in HS; see also § 4). It is
also easy to show that Hdn and CS (or S5) are not contained in each
other. Finally, it is not difficult to conclude that C can be embedded
by t in Hdn, since this embedding now boils down to the embedding of
Cin H by the translation which prefixes ~| ~ 1to every subformula (see
[3] p- 208, 38.12, [16] and [14] pp. 41ff). All this shows that 7] "] can
be conceived as a [0 operator having some properties in addition to
those assumed for HS, which however don’t spoil the possibility of
embedding C by t. This is analogous to the fact that the S4 operator O
has some properties in addition to those assumed for C4, which
however don’t spoil the possibility of embedding H by t.

In what respect Hdn is stronger than HS can be realized from an
alternative axiomatization of Hdn. This system can be obtained by
extending HS with

Odnl. A-0OA
Odn2. O(A->B)->A)->A)

(02, O4 and OS5 are superfluous in this axiomatization). It is clear
that both Odn1 and O dn2, as well as the modal postulates of HS, hold
in the presence of OJdn. Below we sketch the proof of Odn in this
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extension of HS5 (besides the postulates marked we also use 01 and
2, the latter being a consequence of [(Jdnl):

107 1(A-A) O3

“10(A ATTA)
TI(OAAOTIA) TTA-071A
OA-"1071A TIO071A-T171A
OA->"171A;
OWA-BATIB)—>A)>A)
OC171A-A)
Odnl 1T1A-07171A O07171A-0 A
T1T1A-0OA.

Now, O0dn2 is provable in C4, and of course we could embed C by t
in HS extended with O0dn2. Hence, the significant new modal postu-
late added by Hdn when extending HS is Odnl, i.e. A»OA, wich is
the exact converse of [JA— A, the significant new modal postulate
added by S4 when extending C4. This stresses the analogy between
the O of Hdn and the O of S4 we have noted above.

§ 3 Minimal Modal Logics in which Heyting’'s and Classical Logic
can be Embedded

The remarks at the end of the last section lead us to the question:
‘‘What are the minimal properties we must assume for [J in order to be
able to embed H or C by t?”’ Of course, the minimal modal systems in
which we can embed H or C by t are those which contain just the
t-translations of the theorems of H or C. Our question might receive a
less trivial answer if we require from our minimal modal systems that
they be normal, where following a terminology common in modal
logic we shall say that a modal system containing either H or C (or the
corresponding propositional calculi) is normal iff (11 is provable in it
and it is closed under (J2. All the modal systems we have considered
are normal. However, it is possible that even in H4 (or C4) and H5 (or
C5) we assume about [J somewhat more than strictly required from a
normal modal system in which we can embed H and C respectively by
t.

0
olwd

(]
dwz
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Let us consider this question of minimal normal modal systems in
the propositional case. Our propositional modal systems will be
formulated in a propositional language Lp, with the connectives —, A,
vV, T1and O. The system Hp is the Heyting propositional calculus
axiomatized with 1-11, and Cp is the classical propositional calculus
obtained by extending Hp with A V™]A. The systems H4p, H5p,
Hdnp, C4p, C5p, S4p and SS5p are obtained by extending Hp or Cp
with the corresponding axiom-schemata and rules analogously to what
we had in § 1 and § 2. All these modal systems are normal.

It is easy to see that exact analogues of Theorems 1 and 2 can be
proved if we restrict ourselves to the propositional calculi we have
just introduced.

Let now C4p~ and H5p~ be the systems obtained from C4p and H5p
respectively by replacing (03 and 04 by O 107 1(A—>A) and
O(OA —~OOA) (these two schemata are 03 and 004 with a O
prefixed ; since with (0 1 and 02 we have (OB AOC) « O(B AC), the
schema O(OA ~OOA) can be replaced by O(OA-OOA) and
OO OA-0OA)). The systems C4p~ and H5p~ are proper sub-sys-
tems of C4p and H5p respectively (as will become apparent in § 4).

We can prove the following theorems:

Theorem 3 (see [4] Theorem 5.1). C4p~ is the minimal normal
propositional modal system containing Cp in which Hp can be
embedded by t.

Theorem 4. H5p~ is the minimal normal propositional modal system
containing Hp in which Cp can be embedded by t.

Proofs. By inductions on the length of proof of A we show that
p A = igap- 1) and g, A = iggp- t(a). In these inductions we use the
fact that C4p~ and H5p~ are closed under the rule of replacement

O(A -B) oD

Orep.
0D [A/B]

where D [A/B] is the result of substituting zero or more occurrences of
A in D by B. These closures are proved by induction on the
complexity of D. The converse implications ig,- t(a) = iy, A and
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sp~ W(A) = ig, A follow from the containment of C4p™ and H5p~ in
C4p and H5p respectively.

The minimality of Cd4p~ follows from the fact that O]
O 10@0OA-»> 0OA), OOA- O0O@OB- OB)—» OA) and
O@O@@B -» 0OB) - OA) - OA) are t-translations of theorems of
Hp. For the minimality of H5p~ we have in addition (05 which is a
t-translation of A V T]A. q.e.d.

However, it seems these results cannot be straightforwardly ex-
tended to the corresponding predicate calculi C4~ and H5~ (in spite
of what a remark at the end of [4] might suggest). Proofs of theorems
which would be analogues of Theorems 3 and 4 run into difficulties in
showing that C4~ and H5™ are closed under the rule O rep mentioned
in the proofs above. (It is not clear how to pass from (A — B) and
0 VXA to 0O VxB, and analogously with 3.) So, we shall leave
open the question: ‘“What are the minimal normal first-order modal
systems containing C or H in which the predicate calculi H or C can be
embedded by t?°’.

This question is simplified a little bit if we consider normal
first-order modal systems with the Barcan formula (BF)
VxOA-DOVxA. Let C4~ + BF and H5™ + BF be the first-order
systems corresponding to C4p~ and C5p~, extended with BF. Then
we can easily prove by inductions on the length of proof of A that
g A = Ig- 4 pr t(A) and iz A = igs- . gp t(A). (Closure under Orep
for C4~ + BF and H5™ + BF is now readily shown.) The converse of
the last implication is easily obtained using Ctriv as in the proof of
Theorem 2. (Note that a similar move is not available for the converse
of the other implication since C4~ + BF is not a subsystem of H
extended with (0 A —~ A.) Hence, we can conclude that H5™ + BF is
the minimal normal first-order modal system with BF containing H in
which C can be embedded by t, and we conjecture that an analogous
result could be obtained for C4~ + BF and the embedding of H.
Instead of BF we could have used throughout something which
follows from adding BF, i.e. closure under the rule

VxOA
O VxA.

We have not considered systems with BF till now (save for S5, in
which BF is provable) because in at least one of our modal systems,
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namely Hdn, this formula is undesirable. In Hdn with BF we would
obtain Vx 7] T1A — ~171VxA, which is unprovable in H (cf. also the
end of § 4). However, adding BF to Hdn (which here does not differ
from adding the rule derived from BF which we have mentioned
above) does not spoil the possibility of embedding C by t.

To conclude, it seems safe to say that even if C4 and HS are not
exactly the minimal normal modal systems we need for our embed-
dings, they are not much stronger than these minimal systems.

§ 4 Models for Propositional Modal Logics

Now we shall consider Kripke-style models for the modal proposi-
tional calculi we have introduced in § 3. For the systems based on Cp
these shall be the usual kind of Kripke models for propositional modal
logic, whereas for the systems based on Hp we shall have models with
two ‘‘accessibility relations’’, one intuitionistic and the other modal.
This latter kind of models was investigated extensively in [1] and [5].

First we summarize some terminology and results of [1]. An HO
frame is <X, Ry, Ry> where X =0, R;c X? is reflexive and transitive,
Ru< X? and RiRy SRy R; (R, R; is short for R, 0R,). The variables
u, Vv, w, U,,... range over X. An HO model is <X, Ry, Ry, V> where
<X, Ry, Ryy> is an HO frame and the valuation V is a mapping from
the set of propositional variables of Lp, to the power set of X such
that the following heredity condition is satisfied for every propositio-
nal variable p: Vu, v(uR;v = (ueV(p) = veEV(p))). The relation =
in u=A is defined as usual, except that for - and ~]it involves Ry as
in intuitionistic Kripke models, whereas for the necessity operator [J
it involves Ry as in modal Kripke models. A formula A holds in a
model <X,R;,Ry, V> iff (VueX) u=A; A holds in a frame Fr (i.e.
Fr=A) iff A holds in every model with this frame ; and A is valid iff A
holds in every frame. An H (O frame (model) is condensed iff R;Ry =
Ru, and it is strictly condensed iff RjRy = RyR; = Ry. The system
HKp, i.e. Hp extended with (J1 and (02, is sound and complete with
respect to HO frames (condensed HO frames, strictly condensed
H O frames).

A CO frame <X,Ry> is a standard Kripke frame for propositional

.modal logic, and a C [0 model <X, Ry, V> is a corresponding model,
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where V has no heredity condition to satisfy. The definition of = and
other related definitions are also standard (see, for example, [2]).

We shall now state what conditions on H [ frames and C [J frames
correspond to schemata characteristic for our modal systems. The
proofs of the equivalences stating this correspondence are quite
analogous to proofs which can be found in [5], and we shall omit them.
From now on, R will be an abbreviation for RyR;.

Let Fr be an HO frame. Then

(1) Fr=e"10 (A->A) & Vv 3w vRyw (i.e. Ry is serial)

(1a) Fr=0" 10 1(A—A) & Yu,v IW(uRLv = VRyw)

2) Fr=eOA-0O0A & R2S Ry (i.e. Ry is transitive)

(2a) Fr=e0(0A-00A) & VYu,v,w(uRyv = (VRZw = VR w))
3) Fr=eOO0OA-OA & Ry RS (i.e. Ry is weakly dense)
(3a) Fr=00C0A->0A) & Yu,v,wuRgv = (VRyw = VR 2 w))
4 Fr=OAVOTIOA & RyT'RGCER (i.e. Ry is euclidean)

(4a) Fre0@A VOTI0OA) & Vu,v,wuRgv = (VR;7'Ryw = VRyw)).

The conditions on the right-hand sides of (1)-(4) are modified on the
right-hand sides of (1a)-(4a) by adding an assumption. The resulting
conditions are called conditional seriality, conditional rtransitivity,
etc. It is easily inferred from (2) and (3), and (2a) and (3a), that the
conditions corresponding to JA — OOA and O(OA~OOA) are
respectively Ry = Rg? and its conditional variant (remember that in
HKp we can prove (OB ACIC) -« OB AC)).

If Fr is a strictly condensed H O frame or a C [J frame, then all our
equivalences hold when we substitute Ry for Rg.

Let us also consider the correspondence between the schemata
characteristic for Hdnp and conditions on H [J frames (see [6]):

(5) Fr=A-0A o RyCRy
6) Fr=0((A->B)->A)->A) © Vu,v,wuRyv = (VRiw = wR;V)).

Using our equivalences and fairly standard proofs with canonical
models, of the type to be found in [1], [5] and [6], we can show the
soundness and completeness of the systems named on the left with
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respect to H [ frames which satisfy the conditions mentioned in the
equivalences referred to on the right:

Hip : (1), (2), 3

H5p : (1), 2), (3), (4a)
Hdnp : (1), (5), (6)

H5p~ : (1a), (2a), (3a), (4a).

These soundness and completeness results still hold if we restrict
ourselves to condensed or strictly condensed H [J frames.

It is a matter of routine to show also that systems based on Cp
named on the left are sound and complete with respect to C (1 frames
which satisfy the conditions mentioned in the equivalences referred to
on the right, provided we substitute Ry for R in these conditions:

Cip : (1),(2,03)

C4p~ : (1a), (2a), (3a)

Csp : (1), (), (3), (4a)

S4p : (2), Ry is reflexive

S5p  : (2), (4), Ry is reflexive.

Having all this in mind it is not difficult to construct models of
modal predicate logic which will serve to demonstrate the various
proper containement relations we have claimed for the modal predi-
cate calculi of this paper.

We have said above that soundness and completeness for systems
based on Hp hold with strictly condensed HO frames. Strictly
condensed HO frames with respect to which Hdnp can be shown
sound and complete are especially interesting. If in these frames Ry is
a partial ordering, our soundness and completeness result still holds.
These frames can be characterized more simply as partially ordered
frames where for any u there is a maximal element v above u, uRyv
means that v is a maximal element above u, and u =[] A means that A
holds in all maximal elements above u (see [6]). So these frames are
analogous to the frames with respect to which the Heyting predicate
calculus with the Double Negation Shift (DNS) formula Vx ™| T1A —»
~171VxA should be sound and complete (see [8] pp. 41, 57-58). The
DNS formula becomes equivalent to the Barcan formula VxOA —
0O VxA in the presence of JA « ~]]A. Since in H we cannot prove
DNS, in Hdn we should not be able to prove DNS or the Barcan
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formula. So it seems there might be difficulties in transforming the
frames for Hdnp into frames for the predicate calculus Hdn. These
difficulties appear not only with our strictly condensed partially
ordered frames, but also with first-order variants of ordinary HO
frames adequate for Hdn, which seem to validate [0 Vx(A V T1A).
(The schema 171 Vx(A V ]A) can replace DNS in H extended with
DNS.) However, we leave for another occasion the topic of models
for the intuitionistic first-order modal logics we have introduced.
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